Why Most Marketers Fail at Web Analytics

Feb 2, 2015

Distilling valuable and actionable insights from web analytics applications requires sheer hard work and in-depth understanding. The raw data holds a treasure trove of underlying insights just waiting to be discovered – IF you know when, where, and how to look. Misinterpret the numbers and they can become a double-edged sword. In fact, jumping to conclusions can undermine any insights you think you’ve gleaned. Understanding data attribution, modeling, as well as the boundaries, terminology, and context– are all critically important to producing a powerful analysis.

“Data is Just a Clue to the End Truth.” / Josh Smith (@joshsmithnyc)

One of the biggest and most common analytics mistakes one can make is to confuse the data with “the truth” by neglecting basic quality assurance procedures. Always question how the data was collected and perform a comprehensive audit to reveal major tracking issues. Performing an audit is vital to ensuring a high level of confidence in the data you’re analyzing.

Take your data to the next level. Learn how to combine segmentation, personalization and optimization into a powerful conversion optimization plan.

Any decision you base on flawed data could have catastrophic consequences for your business. For example, some of your analytics data may include artificial visits generated by bots and spiders, as well as visits from your company office or QA environments. Without proper analysis, you may arrive at the wrong conclusions about the alleged behavior of your site’s visitors.

Signs Your Doing Web Analytics All Wrong

Uncovering Meaningful Stats

To gain sustainable analytics insights from your data, you need to ask the right questions within the right contexts. Focus on meaningful metrics and establish the right objectives and measurement KPIs. Consider the following question: “How many visitors have used my site search box this month?” The answer won’t get you very far. A good reframing suggestion might be: “How frequently do visitors use my site search box and what are they looking for?” Even better: “What was the influence of the search box on revenue?”

Sometimes, asking the right questions simply isn’t enough. Collect the right metrics, but also tweak them for the best results. For example, Simo Ahava, a Google Analytics expert, suggests a method for making pageview data more meaningful by recording impressions that can be attributed to an active user and filtering the rest out. Meaning, pages that are not open in the active browser tab, or that have just been minimized, will not be tracked. This is a simple yet very effective process for tracking a more meaningful metric.

Another common mistake is to succumb to the urge to report on specific data points outside of their relative context. In other words, reporting for reporting’s sake rather than identifying trends, which should be your goal. You’ll discover that a much clearer picture emerges when you compare data sets over time periods, shedding light on trends and data relationships.

Trend analysis is a very effective and powerful capability you want to nurture. It is often the only lens that illustrates context and patterns, and accurately forecasts results (e.g. seasonality, geography, or current events).

When comparing trends, avoid any arbitrary correlation between data sets. Don’t compare two distinct data sets in your web analytics reports and expect them to behave in a similar manner. Refrain from making any rash analytical decisions without forming a qualitative opinion. Understand the context and nature of each data set first.

Your analytics data relies heavily on mathematics and statistics, which can both help and hinder your analysis. Calculating statistical significance can lead to better marketing decisions. In other words, understanding the likelihood that your data has not occurred by chance will improve your confidence in that data.

Another common mistake is to automatically compare one year’s results to those of the previous year. Because so much has changed during that time, comparing the two periods without understanding the underlying causes of the differences is essentially comparing apples to oranges.

For example, different tools use different metrics and different tracking methods. If you want to compare two different data sets, make sure you’re comparing trends as opposed to absolute numbers. Also, make sure you’re comparing two closely related metrics. For example, while ad clicks are directly tied to page views, the same visitor will often click on an ad more than once. Comparing clicks to site visits is liable to produce misleading results.

Storytelling Means Everything to Your Data

Much like journalists, web analysts are essentially well-disguised storytellers. They structure data along memorable human storylines, create narratives, make sense of the numbers, separate signals from noise, and reveal narrative visualization.

Countless stories may emerge from the same data, ranging from time-sensitive themes, predictions, behavior and correlations. Carving out the story buried in the data is obviously a challenge, but also a skill well worth honing. A good story will breathe life into your data with incredible results.

Segmentation helps you uncover those stories by isolating different audience personas and relating them to the figures based on common behaviors, sources, demographics, interests and more. Segmenting the data makes it easier to elicit valuable insights. Without segmentation, you’re just looking at aggregated, out-of-context data. Approach segments as a spotlight that allows you to identify interesting stories behind objects obscured in darkness.

Learn how to build actionable segments and deliver personalized experiences that drive higher revenues and engagement.

You can analyze data in endless forms, but it all boils down to one critical component: visualization. The visualization must transcend the raw data to communicate actionable insights. Whether you’re looking to visualize relationships, distributions, comparisons or compositions, choose the chart that highlights the deepest meaning.

A great case in point is this innovative chart from The New York Times, which presents a fascinating analysis of how the Great Recession has reshaped the US economy over the past ten years:

How the Recession Reshaped the US Economy

Data visualization is about deciding what you want to communicate to your audience, and how your message will be best presented. The reader must be able to recognize patterns and trends effortlessly and make snap decisions based on the visual. There’s an emotional layer involved, too. Charts are, as a rule, more direct than numbers and are so useful for affecting behavior and engaging readers. To get started, experiment with several visualization tools to help you tell stories with data, such as Tableau, Google Fusion Tables, Visual.ly and more.

Getting Web Analytics Right

Going back to the data itself, choosing what to present is a major issue. Vanity metrics, as opposed to actionable metrics, might look good on a presentation, but they sugarcoat reality at best and offer erroneous insights at worst.

Vanity metrics are available, trackable and can easily indicate improvement. Nevertheless, they are devoid of context and are misleading. In contrast, actionable metrics are more difficult to pinpoint but offer a clear focus that is aligned with your goals. If growth is your primary objective, you might be inclined to report on a steady increase in new user acquisition. But if your churn rate is too high, that acquisition is meaningless without considering visit duration as well.

You can easily misinterpret web analytics data using a variety of metrics that may seem similar on the surface. Do you know the difference between  “Absolute Unique Visitors” vs. “New and Returning”? Do you know how Time on Page is calculated? How do ‘Web Trends’ relate to ‘Average Time Viewed’?

Know your metrics and dimensions and fully understand how the data is collected and measured. Analytics ninjas go beyond the “What” to uncover the “Why” and “How” of taking their businesses to the next level.

Why Most Marketers Fail at Web Analytics
5 (100%) 11 votes

  • I really loved this one. Good writing

  • Amit

    Geat Post! :)

  • The other element that gets forgotten is most of the cookie based analytics tools only tell a part of the story. I’ve seen wild fluctuations between (cleaned) non-cookie and cookie reports that suggested anything from 90 to 10% of visitors have disabled cookie tracking in some way.

    It’s always worth having a look at the underlying log data to see if there are behaviours that are different between those with cookies on and off.

    • Good points. Although log-based analytics data can be fairly
      structured and useful, it requires ongoing efforts to process and clean up the
      raw data, especially from hidden spiders and bot data. Generally speaking, I
      consider JS-based solutions as a better representation of true visitors, compared
      to log-based solutions. Anyway, I agree that it’s worth having a look at the log data and compare it to the cookie data. Thanks for the comment Ross.

      • Not sure I’d agree that JS gives a better representation of true visitors. It does give a finer granularity for those who accept tracking, but as I said I’ve seen cleaned up data show that might be as low as 10% of cleaned visitors, or as high as 90%. There are also plenty of bots that try to slip in through the JS net as well!

Menu Title
Contact Us
×